Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering.
نویسندگان
چکیده
The hindered rotor transitions of H(2) adsorbed in the chemically related and prototypical porous metal-organic frameworks IRMOF-1, IRMOF-8, IRMOF-11, and MOF-177 were studied by inelastic neutron scattering to gain information on the specifics of H(2) binding in this class of adsorbents. Remarkably sharp and complex spectra of these materials signify a diversity of well-defined binding sites. Similarities in the spectral features as a function of H(2) loading and correlations with recent crystallographic studies were used to assign transitions ranging in rotational barrier from <0.04 to 0.6 kcal/mol as corresponding to localized adsorption sites on the organic and inorganic components of these frameworks. We find that binding of H(2) at the inorganic cluster sites is affected by the nature of the organic link and is strongest in IRMOF-11 in accord with our adsorption isotherm data. The sites on the organic link have lower binding energies, but a much greater capacity for increases in H(2) loading, which demonstrates their importance for hydrogen uptake by these materials.
منابع مشابه
M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) metal-organic frameworks exhibiting increased charge density and enhanced H2 binding at the open metal sites.
The well-known frameworks of the type M2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) have numerous potential applications in gas storage and separations, owing to their exceptionally high concentration of coordinatively unsaturated metal surface sites, which can interact strongly with small gas molecules such as H2. Employing a related meta-functionalized linker that is readily ob...
متن کاملCapture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites
The production of pure deuterium and the removal of tritium from nuclear waste are the key challenges in separation of light isotopes. Presently, the technological methods are extremely energy- and cost-intensive. Here we report the capture of heavy hydrogen isotopes from hydrogen gas by selective adsorption at Cu(I) sites in a metal-organic framework. At the strongly binding Cu(I) sites (32 kJ...
متن کاملFlexible Yttrium Coordination Geometry Inhibits “Bare-Metal” Guest Interactions in the Metal-Organic Framework Y(btc)
Y(btc) (btc = 1,3,5-benzenetricarboxylate) is a metal-organic framework that exhibits significant adsorption of industrially-relevant gases such as H2, CH4, and O2. Previous studies have noted a surprising lack of close interactions between the adsorbed guest molecules and Y, despite the apparent availability of a “bare-metal” binding site. We have extended our previous work in a detailed inves...
متن کاملHydrogen storage in microporous metal-organic frameworks.
Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the ad...
متن کاملHydrogen storage in a prototypical zeolitic imidazolate framework-8.
Zeolitic imidazolate frameworks (ZIFs) are a new class of nanoporous compounds which consist of tetrahedral clusters of MN4 (M ) Co, Cu, Zn, etc.) linked by simple imidazolate ligands.1,2 As a subfamily of metal-organic frameworks (MOFs), ZIFs exhibit the tunable pore size and chemical functionality of classical MOFs. At the same time, they possess the exceptional chemical stability and rich st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 42 شماره
صفحات -
تاریخ انتشار 2005